
Basalt Formations

Technical Design Document
Sync and Ecco

1

Basalt Formations

Contents

Contents 2
Version History 4
Game Details 5
Team Members 5
Game Concept 5
Technical Goals 6

Custom CPP Engine 6
OpenGL Render Pipeline 6
Custom Physics Engine 6

Technical Risks 6
Custom CPP Engine 6

Risk Mitigation 6
OpenGL Render Pipeline 6

Risk Mitigation 6
Custom Physics Engine 7

Risk Mitigation 7
System Requirements 7

Recommended PC Specifications 7
Required Hardware 7

Third-Party Tools 8
Third-Party Programming Libraries / Tools 9

File Formats 10
Source Control 11

Setup 11
First Time 11
Per computer 11

Additional Repository Notes 11
Input Methods 12
Engine Systems 12

Interface 12
Menu Bar 12
Windows 12

Audio Menu 12
Camera Menu 13
Enemy System 14
Health System 14
Hierarchy 14

2

Basalt Formations

Light Menu 14
Particle Menu 14
Physics System 14
Prefabs Menu 15
Render System 15
Resource Manager 15
SceneObject Menu 16
Style Editor Menu 16
User Prefs 16
Imgui Demo 16
Input 17
Level Editor 17

Level Editor 17
Ecco 17
Render System 19

3

Basalt Formations

Version History

Date
(D/M)

Name/s Notes

23/07 Lochie Made the document and filled in basic information

14/08 Tom Updated Subtitle.

Updated Game Concept

Added Technical Goals:
- Custom CPP Engine.
- OpenGL Render Pipeline.
- Custom Physics Engine.

Added Technical Risks:
- Custom CPP Engine.
- OpenGL Render Pipeline.
- Custom Physics Engine.

Added Engine Systems (not filled out)

22/08 Lochie Added risk mitigation to each of the Technical Risks
- Custom CPP Engine Risk Mitigation
- OpenGL Risk Mitigation
- Custom Physics Engine Risk Mitigation

Added Third-Party Programming Libraries / Tools

27/08 Lochie Added links for Input and Engine Systems

1/09 Tom Added Render System

4/12 Lochie General revision for the whole of the document

5/12 Lochie Added Windows

4

Basalt Formations

Game Details
Game Name: Sync & Ecco

Team Name: Basalt Formations

Team Members
Name Titles

Lochlan (Lochie) McDonald Programmer

Thomas (Tom) O'Brien Programmer

Brodie Frazier Designer

Austin Lanyon Designer

Kian Kelly Designer

Rachel Missingham Artist

Lauren Trinh Artist

Hachi Dinh Artist

Game Concept
Sync and Ecco is a 2-player local co-op twin-stick top-down shooter, emphasising asymmetric
gameplay and co-op reliance.

5

Basalt Formations

Technical Goals

Custom CPP Engine
- Build an engine in C++, using no out-of-the-box engine.
- Have the engine primarily use an Entity Component System.
- Empower designers and artists with tools to interact within the engine.

OpenGL Render Pipeline
- Rendering through OpenGL, using in-house created shaders.
- Explore and create lighting and material shaders typically inaccessible or challenging in

out-of-the-box render pipelines.

Custom Physics Engine
- Create a custom physics engine to suit the needs of the project.

Technical Risks

Custom CPP Engine
- Dedicating development time to the engine will limit the time allowed for developing

gameplay functionality, this could lead to not enough time for gameplay and too much on
the engine.

Risk Mitigation
- We should ensure that gameplay milestones are getting hit.
- Not all programmers should be working directly on engine stuff simultaneously, other

team members should always have a programmer to ask about the progress of
gameplay mechanics.

- Plan out the features required for the engine as far ahead of time as possible to ensure
that any future engine feature will not be a surprise and can prepared for.

OpenGL Render Pipeline
- Making the render pipeline steps ourselves could lead to inefficient and hamstrung

methods that are obfuscated or overcome in out-of-the-box rendering systems.

Risk Mitigation
- Confer with people familiar with rendering and engine architecture, especially for

anything complex.
- After any rendering change, make sure that there is no significant drop in performance.

6

Basalt Formations

Custom Physics Engine
- Using a custom physics engine could lead to mistakes being made that would be solved

by using a library from the start.

Risk Mitigation
- Physics should also be tested in a game-less environment, ensuring that the limits of the

implemented physics engine are known and should not be hit in normal gameplay.
- Most of the physics should be done early, so other features that rely upon it are tested

correctly to reveal potential issues.

System Requirements

Recommended PC Specifications

Operating System
Version

Windows 10 or later

CPU Intel(R) Core(TM) i7-6700 CPU or better

GPU NVIDIA GeForce RTX 3050 Ti or better

Additional
Requirements

Requires Microsoft Visual C++ Redistributable runtimes

Required Hardware
- 2 Xbox Controllers

7

Basalt Formations

Third-Party Tools

Tools Purpose

Visual Studio Community 2022 IDE

Google Docs Documentation

Google Sheets Scheduling, Documentation

Google Slides & Microsoft Powerpoint Presentations, Documentation

HacknPlan Team Management

Google Forms QA

Github & Github Desktop & Source Tree Version Control

Adobe Photoshop Art

Adobe Illustrator Art

Autodesk Maya & Blender Art

Substance Painter Art

Substance Designer Art

Zbrush Art

Draw.io & Lucidchart Documentation, flow charts

Microsoft Teams Group Communication

OneDrive & Google Drive Documentation & Cloud Storage

FMOD & Audacity Sound Editing

Soundsnap Sound Sources

Itch Deployment of Build

RenderDoc Debugging

8

https://visualstudio.microsoft.com/vs/community/
https://www.google.com.au/docs/about/
https://www.google.com.au/sheets/about/
https://www.google.com.au/slides/about/
https://www.microsoft.com/en-au/microsoft-365/powerpoint
https://hacknplan.com/
https://www.google.com.au/forms/about/
https://github.com/
https://desktop.github.com/
https://www.sourcetreeapp.com/
https://www.adobe.com/au/products/photoshop.html
https://www.adobe.com/au/products/illustrator.html
https://www.autodesk.com.au/products/maya
https://www.blender.org/
https://www.adobe.com/au/products/substance3d-painter.html
https://www.adobe.com/products/substance3d/apps/designer.html?sdid=M3T3SPZB&mv=search&mv2=paidsearch&gad_source=1&gclid=CjwKCAjwhvi0BhA4EiwAX25uj0k16nhTWIqRRKRYsL0e6ZxFycKJpvZ30yI536bwkDKo-1APJ3ScrRoC0_8QAvD_BwE
https://www.maxon.net/en/zbrush
https://www.drawio.com/
https://www.lucidchart.com/pages/
https://www.microsoft.com/en-au/microsoft-teams/group-chat-software/
https://www.microsoft.com/en-au/microsoft-365/onedrive/online-cloud-storage
https://www.google.com/intl/en_au/drive/
https://www.fmod.com/
https://www.audacityteam.org/
https://www.soundsnap.com/
https://itch.io/
https://renderdoc.org/

Basalt Formations

Third-Party Programming Libraries / Tools

GLFW & Glad OpenGL API

Dear ImGui & ImGuizmo Development UI

stb_image_write & stb_image Saving and Loading Images

GLM Mathematical Operations

Assimp Model Loading

soloud Audio

toml Saving and loading

9

https://www.glfw.org/
https://glad.dav1d.de/
https://github.com/ocornut/imgui
https://github.com/CedricGuillemet/ImGuizmo/releases/tag/1.83
https://github.com/nothings/stb/blob/master/stb_image_write.h
https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/g-truc/glm
https://github.com/assimp/assimp
https://solhsa.com/soloud/
https://toml.io/en/

Basalt Formations

File Formats

File Type Format

Audio .wav

Model .fbx / .obj

Animation .dae

Material .mat

Image .png

Texture .tga

Script .cpp / .h

Code documentation .pdf

Game level .level

Vertex shader .vert

Fragment shader .frag

Shader meta info .shader

Texture meta info .texture

Material meta info .material

Animation meta info .animation

Model meta info .model

Prefab .prefab

Engine style info .style

Camera system info .cameraSystem

Health system info .healthSystem

Enemy system info .enemySystem

Engine preferences .prefs

Imgui window placement .ini

10

Basalt Formations

Source Control
Version Control System Git

Source Control Repository Host GitHub

Source Control Tools GitHub Desktop & Source Tree & Fork

Source Control Remote Repository URL GitHub Link

Setup
Downloading and setting up the project on a computer.

First Time
1. Ensure you have a GitHub account.
2. Contact Lochie to be added to the project.
3. Go to your GitHub Notifications, click on the notification invite from Lochie to be added to

the project and accept the invitation.

Per computer
1. Ensure you have GitHub Desktop or another source control program of your choice.

a. The following steps are specifically with GitHub Desktop in mind
2. Clone the repository

LochieGraphics
3. Open the local location of the

repository, this can be done by
right-clicking the top left
‘Current Repository’ And
clicking ‘Show in Explorer’

4. In the folder, there should be
an ‘.exe’ that you can now run

Additional Repository Notes
Do not do anything related to the repository without first communicating with Lochie.

11

https://git-scm.com/
https://github.com/
https://github.com/apps/desktop
https://www.sourcetreeapp.com/
https://git-fork.com/
https://github.com/Locstock04/LochieGraphics
https://github.com/
https://github.com/notifications
https://desktop.github.com/download/

Basalt Formations

Input Methods
Input Methods and game controls can be found at GDD Input
For development within the engine, tools are available to test without physical controllers.

Engine Systems
The following should explain how to set up and use engine tools. For any more information,
contact a programmer.

Interface

Menu Bar
Once the engine is launched, menu buttons are available at the top of the screen. They are:

- File, for saving and loading. The save button can be pressed with CTRL+S and loaded
with CTRL + L.

- Windows, this is for opening and closing different windows. See Windows for more info.
- SceneObject, this contains a button to create a new scene object.
- Open in Explorer, pressing this opens the project directory in a new file explorer.

Windows
Windows can be opened through the menu bar button.

Each window contains information about different systems and means to
interact with the engine.

Opening or closing the scene object menu or the hierarchy will do the same to
the other if matched.

The window layout is stored as a file named “imgui.ini”

Audio Menu
This menu contains volume settings for any mixers, and
information about audio such as the path, whether or not it has
been loaded yet and how many times it has been played since
the window was opened. This menu can also be used to test
sounds. Although the paths can be changed live here, they do
not save so this option is only for testing.

On the engine launch, a warning will appear for audio slots with
no set path.

12

https://docs.google.com/document/d/1J_CYipGtOKzfoiKkKpwG2v0gmQnsydQrfR_QTrHv7aM/edit#heading=h.5zgu0ugzv23o

Basalt Formations

Camera Menu
The camera menu contains information about the current camera and details on the camera
system settings.

FOV The cameras FOV.

Near Plane The near plane of the camera.

Far Plane The far plane of the camera.

Mode How the camera is controlled and moved
around, there are separate modes designed
for the level editor and the art tool, as well as
ones specific to gameplay.

Orthographic
Mode

To make the camera orthographic.

Orthographic
Scale

The ‘size’ of the orthographic camera, this
option is only visible if the camera is
orthographic.

Camera
System
Filename

The name of the file for the camera system,
and set camera system values can be stored
and loaded from a file by using the “Save”,
“Load”, or “Save as” buttons.

Minimum
Camera
Zoom

The closest the camera can be during
gameplay.

Maximum
Camera
Zoom

The furthest the camera can be during
gameplay.

Zoom
Intensity
While
targeting

This value is used for the old camera system
gameplay values and is now obsolete.

Zoom In
Speed

How fast the camera can move in during
gameplay.

Zoom Out
Speed

How fast the camera can move out during
gameplay.

Camera
Move Speed

How fast the camera moves (across the XZ
plane) during gameplay.

13

Basalt Formations

While
targeting

Camera Fov The camera FOV during gameplay

Camera
Zoom
Closest
Distance

The distance the players have to be for the
camera to be the closest distance away.

Camera
Zoom
Furthest
Distance

The distance the players have to be away
from each other for the camera to be as far
as it can be.

Enemy System
The enemy system can be saved and loaded with Save, Load, Save as. The enemy system
has all the values for interacting with the enemies, such as how they move, the damage they do,
and their health.

Health System
The health system menu is primarily for changing details about the healing ability.

Hierarchy
The hierarchy shows the transform hierarchy for all the scene objects within the level.

Clicking on an object will select that object. Multiple objects can be selected at once by using
shift for a range of selections or control to toggle the selection of individual objects.

Light Menu
Options for the directional light such as the colour and direction. Individual light settings are
contained on their respective parts.

Particle Menu
For debugging and previewing particles, this menu shows information about any currently live
particles.

Physics System
The physics menu visualises the physics layers. It also has an option to display all of the
colliders.

14

Basalt Formations

Prefabs Menu
The prefabs menu has a selection of the selected prefab. It also has buttons to refresh the
selected prefab instance, refresh all prefab instances within the level, and save any prefab
origins.

Render System
The render system menu contains options for editing the SSAO, viewing a specific buffer index,
adjusting the exposure and ambient light intensity, adjusting certain light values, turning super
sampling on, and tone mapping. These values are for previewing and cannot be saved, if they
wish to be changed let a programmer know.

More information about the render system specifically is in the Render System.

Resource Manager
The resource manager menu contains a list of all loaded textures, materials, shaders
and models. It also shows information on recent frame times

Textures show their path, type, whether or
not it is flipped, its GUID, its GL ID, and a
button to reload the texture.

The texture path can be changed live,
however this will not force the texture to be
reloaded.
At the end of the list of the textures, there is
a button available to force reload all of the
textures (will not load any ‘generated’ textures; ones without a path)

Materials show their GUID, name, shader, colour, texture slots,
and float values.

The texture and float slots are uniforms accessed from the
shader, any shader variables that are prefixed with “material.”
will be shown here. Pressing the open modal button will open a
window to edit material values, this is the same window that is
displayed when creating a material.

Shaders show their
vertex shader path,
fragment shader
path, flags, GUID,
GL ID, a button to
reload, and a save button.

15

Basalt Formations

Pressing the save button will create a shader asset of that name, shader assets are not
automatically loaded like other assets. There is also a button to create a new
shader at the end of the list of shaders.

Models show a list of all loaded models with their GUID, path, mesh count, min and maxes,
material IDs, model hierarchy info, and bone information.

At the bottom of the resource manager,
there is a graph showcasing the
amount of time the last 300 frames
took, the average frame time across
those, the average FPS, the latest
frame time, the latest FPS and the
minimum frame time which makes the
engine pretend that the frame time can
never be longer than this value.

SceneObject Menu
The Scene Object menu displays information for the currently
selected object and the parts that belong to it.

All scene objects have a transform.

Style Editor Menu
For creating and editing styles for the editor.

User Prefs
User preferences have a wide range of options for interacting
with the engine. There should be user preferences specifically
made for the build.

The last user preference used is remembered and
automatically assigned on engine startup.

Imgui Demo
A demo window with examples of possible UI options, mainly
there for the development of the engine and not intended for
the user.

16

Basalt Formations

Input
The input menu contains the status of currently connected input
devices and supports options for the ability to test without a
physical input device, by adding the keyboard as an input device or
adding a fake input device that is controlled using a GUI.

Level Editor
Contains the play button. Allows the user to switch controller (for
the first input device) to specifically a single player for testing.

Brush mode has 5 different modes, being:
- None
- Brush, for placing ground tiles
- Model Placer, placing models
- Prefab Placer, placing prefabs
- View Select, selecting in a top-down view

Level Editor
Selecting an object will show a transform gizmo, ‘G’ toggles between translation and rotation,
and ‘H’ toggles between local and global.
You can click an object to select it while in no brush mode, the selection is based on the
bounding box for the model, or a metre cube if the object has no model.

Ecco
Although only one Ecco can function in a scene, multiple can be created, so it is important to
only make one. Ecco can be found in the scene object hierarchy, their tweakable values include:
Screenshot from Ecco GUI

17

Basalt Formations

● Car move speed: Changes the acceleration of Ecco.
● Car reverse speed: Changes the reversing acceleration of Ecco.
● Max Car move speed: Changes the max speed of Ecco
● Turning Circle Scalar: Changes how tight the circle is, a smaller number is a larger

circle.
● Max Wheel Turning Angle: Changes the maximum angle at which the wheels can point

off the forward axis of Ecco.
● Wheel Turn Speed: Changes how fast the wheels turn to the new angle, a smaller

number is a slower speed.
● Sideways Wheel Drag: Changes scale of drag induced by travelling in a different

direction to the wheels' alignment.
● Stopping Wheel Drag: Changes scale of drag induced by not putting acceleration

inputs in.
● Local Steering: Toggles whether the steering is based on the global position of the

joystick or its local one,

18

Basalt Formations

Render System
The render system is written in C++ and GLSL using OpenGL. It currently supports the following
features:

1. Ambient level texture
2. Albedo level texture
3. Skinned Mesh Rendering with blending
4. HDR
5. Bloom
6. SSAO
7. PBR
8. Point Lights
9. Spot Lights
10. Line lights
11. Beams (For sync shots)
12. Aim guide
13. Frustum culling
14. Particles
15. Spotlight culling & optimised shadowing
16. Shadow mapping for spotlights.
17. Contact shadows point lights
18. Optimised shader swapping.
19. Tone mapping
20. Supersampling
21. Deferred rendering
22. Static & dynamic pass
23. Decals
24. Shadow wall
25. Lights colour over time texture
26. Ecco face animations

The system takes Model Renderer Components and renders them in the scene, each being
able to use distinct and non-distinct materials, meshes, and shaders.

19

